Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery.
نویسنده
چکیده
Cognitive dysfunction has been found in epidemiological studies to be among the most sensitive impairments associated with developmental exposure to a variety of environmental contaminants from heavy metals to polyhalogenated hydrocarbons and pesticides. These chemicals have been also shown to impair cognitive function after developmental exposure in experimental animal models. The radial-arm maze (RAM) has proven to be a sensitive and reliable way to assess both learning and memory in a variety of species, most often in rats and mice. The RAM is a very adaptable test method that takes advantage of rodents' instinct to explore new places in the environment to forage. That is, rodents do not need to be trained to run through the maze; they will normally do this from the initial session of testing. Training with differential reinforcement for arm choices provides a more rigorous test of learning and memory. The RAM is quite adaptable for assessing various aspects of cognition. Although the RAM has been mostly used to assess spatial learning and memory, it can be configured to assess non-spatial memory as well. Both working and reference memory can be easily distinguished. The RAM can be run with both appetitive (food reinforced) and aversive (water escape) motivators. The RAM has been found to be sensitive to a wide variety of developmental toxicants including heavy metals such as mercury and pesticides such as chlorpyrifos. There is an extremely rich literature especially with rats showing the effects of many types of brain lesions and drug effects so that the participation of a wide variety of neural systems in RAM performance is known. These systems, notably the hippocampus and frontal cortex, and acetylcholine and glutamate neurotransmitter systems, are the same neural systems that have been shown in humans to be critical for learning and memory. This considerably aids the interpretation of neurobehavioral toxicity studies.
منابع مشابه
Effects of Boswellia Papyrifera Gum Extract on Learning and Memory in Mice and Rats
Objective(s) Learning is defined as the acquisition of information and skills, while subsequent retention of that information is called memory. The objective of the present study was to investigate the effect of aqueous extract of Boswellia papyrifera on learning and memory paradigms in mice and rats. Materials and Methods This study was held at the Department of Pharmacology, Faculty of Pha...
متن کاملEffect of Centella asiatica on pathophysiology of mild chronic cerebral hypoperfusion in rats
Centella asiatica extract on cognition and hippocampal pathology of mild chronic cerebral hypoperfusion (CCH) that was induced by permanent right common carotid artery occlusion (RCO) in rats. Materials and Methods: Sixty-four male Sprague-Dawley rats were randomly divided into four groups of Sham-veh, Sham-C. asiatica, RCO-veh and RCO-C. asiatica, which were further divided into short-term and...
متن کاملMefenamic Acid Attenuates Intracerebroventricular Streptozotocin-Induced Cognitive Deficits in the Rat: A Behavioral Analysis
Intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats is followed by long-term and progressive deficits in learning, memory, and cognitive performance which is somewhat similar to sporadic Alzheimer’s disease (SAD). Epidemiological studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs) could delay or slow the clinical expression of SAD. Therefore, the benefi...
متن کاملA rat model of the cognitive impairment from Pfiesteria piscicida exposure.
Pfiesteria piscicida Steidinger & Burkholder, an estuarine dinoflagellate known to kill fish, has also been associated with neurocognitive deficits in humans. We have developed a rat model to determine the cause-and-effect relationship between exposure to Pfiesteria-containing water and cognitive impairment and to determine the neurobehavioral mechanisms underlying the Pfiesteria effect. The ra...
متن کاملThe effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat
Abstract Introduction: Intracerebroventricular (ICV) injection of streptozotocin (STZ) causes cognitive impairment in rats. The beneficial effect of genistein (GEN) was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. Methods: For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg). The STZ-injected rats received GEN (1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurotoxicology and teratology
دوره 52 Pt A شماره
صفحات -
تاریخ انتشار 2015